VCS-Single-Axis.jpg

Software Functions for Single Axis Controller


Random Vibration Control

  Random Vibration Control   Random Vibration Control provides precise multi-channel control in real time. The device under test is subjected to true random noise with a precisely shaped spectrum with either Gaussian or non-Gaussian amplitude statistics.    

Random Vibration Control

Random Vibration Control provides precise multi-channel control in real time. The device under test is subjected to true random noise with a precisely shaped spectrum with either Gaussian or non-Gaussian amplitude statistics. 

 

  Sine on Random Control   Up to 12 independently sweeping controlled sine tones may be added to the broadband random signal. Each sine tone has its own sweeping schedule and range. Tones can be turned on and off manually or by a predefined schedule.

Sine on Random Control

Up to 12 independently sweeping controlled sine tones may be added to the broadband random signal. Each sine tone has its own sweeping schedule and range. Tones can be turned on and off manually or by a predefined schedule.

  Random on Random Control   Up to 12 independent (stationary or sweeping) random narrow-band signals may be superimposed on the broadband random signal. Each narrow-band has its own sweeping schedule and range. They can be turned on and off by a predefined schedule or manually.

Random on Random Control

Up to 12 independent (stationary or sweeping) random narrow-band signals may be superimposed on the broadband random signal. Each narrow-band has its own sweeping schedule and range. They can be turned on and off by a predefined schedule or manually.

  Kurtosis Control   Kurtosis control can provide a more damaging non-Gaussian random control time history. A unique patent pending technology can generate a non-Gaussian control time history while precisely maintaining its spectrum shape.

Kurtosis Control

Kurtosis control can provide a more damaging non-Gaussian random control time history. A unique patent pending technology can generate a non-Gaussian control time history while precisely maintaining its spectrum shape.

  Multi-Resolution Function for Random Vibration Control   EDM provides the multi-resolution feature that applies the selected resolution in the high-frequency range and 8 times of the resolution in the low-frequency range. The cutoff frequency, which divides the low and high-frequency range, is calculated by the software. 

Multi-Resolution Function for Random Vibration Control

EDM provides the multi-resolution feature that applies the selected resolution in the high-frequency range and 8 times of the resolution in the low-frequency range. The cutoff frequency, which divides the low and high-frequency range, is calculated by the software. 

  Fatigue Damage Spectrum in Random   Fatigue Damage Spectrum (FDS) allows users to compare the potential damage caused by different Random and swept Sine profiles.  In a similar fashion to Multi-Sine Control, FDS provides a way to reduce testing times by calculating the quickest path to destruction or damage. 

Fatigue Damage Spectrum in Random

Fatigue Damage Spectrum (FDS) allows users to compare the potential damage caused by different Random and swept Sine profiles.  In a similar fashion to Multi-Sine Control, FDS provides a way to reduce testing times by calculating the quickest path to destruction or damage. 


Sine Vibration Control

  Swept Sine Control   Swept Sine Vibration Control provides precise multi-channel control in real time. It provides a spectrally pure undistorted sine wave and a control dynamic range of up to 100 dB. As many as 512 channels can be enabled for Control, Notching, Monitoring and time-data recording. 

Swept Sine Control

Swept Sine Vibration Control provides precise multi-channel control in real time. It provides a spectrally pure undistorted sine wave and a control dynamic range of up to 100 dB. As many as 512 channels can be enabled for Control, Notching, Monitoring and time-data recording. 

  Total Harmonic Distortion (THD) Measurement for Sine   This option adds the ability to compute Total Harmonic Distortion (THD) of the control and Input signals. THD plots can be generated while the drive signal either steps through multiple discrete frequencies or sweeps a sine over a predefined range.

Total Harmonic Distortion (THD) Measurement for Sine

This option adds the ability to compute Total Harmonic Distortion (THD) of the control and Input signals. THD plots can be generated while the drive signal either steps through multiple discrete frequencies or sweeps a sine over a predefined range.

  Resonance Search and Tracked Dwell (RSTD) Control   The resonance search function determines resonant frequencies from the peaks of a transmissibility signal. Dwell type (Fixed dwell, Tracked dwell, Phase tracked dwell) may be specified manually (with a list of resonance frequencies) or automatically executed after a resonance search is done.

Resonance Search and Tracked Dwell (RSTD) Control

The resonance search function determines resonant frequencies from the peaks of a transmissibility signal. Dwell type (Fixed dwell, Tracked dwell, Phase tracked dwell) may be specified manually (with a list of resonance frequencies) or automatically executed after a resonance search is done.

  Sine Oscillator   Sine Oscillator is a diagnostic tool providing manual control of the sine output while the system displays various time signals and frequency spectra. Random excitation can be enabled as a checkup function. When the close-loop option is enabled, the Sine Oscillator is essentially a limited sine controller with augmented manual control functions.

Sine Oscillator

Sine Oscillator is a diagnostic tool providing manual control of the sine output while the system displays various time signals and frequency spectra. Random excitation can be enabled as a checkup function. When the close-loop option is enabled, the Sine Oscillator is essentially a limited sine controller with augmented manual control functions.

  Multi-Sine Control   Multi-Sine control enables multiple sine tones sweeping simultaneously and ensures that multiple resonant frequencies of the structure can be excited. With multiple sine tone excitation, the required time duration of sine testing can be reduced significantly. 

Multi-Sine Control

Multi-Sine control enables multiple sine tones sweeping simultaneously and ensures that multiple resonant frequencies of the structure can be excited. With multiple sine tone excitation, the required time duration of sine testing can be reduced significantly. 


Shock Vibration Control

  Classical Shock Control   Classical Shock Control provides precise, real-time, multi-channel control and analysis of a transient motion in the time domain. Classical pulse shapes include half-sine, haversine, terminal-peak sawtooth, initial-peak saw tooth, triangle, rectangle, and trapezoid. Applicable Test Standards include MIL-STD-810F, MIL-STD-202F, ISO 9568 and IEC 60068 (plus user-defined specifications).

Classical Shock Control

Classical Shock Control provides precise, real-time, multi-channel control and analysis of a transient motion in the time domain. Classical pulse shapes include half-sine, haversine, terminal-peak sawtooth, initial-peak saw tooth, triangle, rectangle, and trapezoid. Applicable Test Standards include MIL-STD-810F, MIL-STD-202F, ISO 9568 and IEC 60068 (plus user-defined specifications).

  Shock Response Spectrum (SRS) Synthesis & Control   The SRS synthesis and control package provides the means to control the measured SRS of the DUT to match a target SRS, the Required Response Spectrum (RRS). The necessary drive time history is synthesized from damped-sine or sine-beat wavelets. Damped Sine Parameters include frequency, amplitude, critical damping factor, and delay. Waveforms may be automatically synthesized from a user-specified SRS reference profile.

Shock Response Spectrum (SRS) Synthesis & Control

The SRS synthesis and control package provides the means to control the measured SRS of the DUT to match a target SRS, the Required Response Spectrum (RRS). The necessary drive time history is synthesized from damped-sine or sine-beat wavelets. Damped Sine Parameters include frequency, amplitude, critical damping factor, and delay. Waveforms may be automatically synthesized from a user-specified SRS reference profile.

  Transient Time History Control (TTH)   Targeting seismic simulation applications, TTH controls shaker motion to match any user defined transient waveform. Time waveforms can be imported to EDM in various formats. Scaling, editing, digital re-sampling, high-pass or low-pass filtering and compensation will tailor the waveform so that it may be duplicated on a particular shaker.

Transient Time History Control (TTH)

Targeting seismic simulation applications, TTH controls shaker motion to match any user defined transient waveform. Time waveforms can be imported to EDM in various formats. Scaling, editing, digital re-sampling, high-pass or low-pass filtering and compensation will tailor the waveform so that it may be duplicated on a particular shaker.

  Earthquake Testing Control   The earthquake testing control package provides controls to meet a target a Required Response Spectrum (RRS). Waveforms are automatically synthesized from a user-specified SRS reference profile using random type of wavelets, uniform or shaped. Alarm and Abort tolerances may be applied to any active channel to provide an extra degree of safety for delicate test articles.

Earthquake Testing Control

The earthquake testing control package provides controls to meet a target a Required Response Spectrum (RRS). Waveforms are automatically synthesized from a user-specified SRS reference profile using random type of wavelets, uniform or shaped. Alarm and Abort tolerances may be applied to any active channel to provide an extra degree of safety for delicate test articles.

  Transient Random Control   Transient Random control applies a chain of pulses with random nature to the shaker. The target profile power spectrum is defined in a same way as Random control, with the addition of defining transient pulse interval. Applications includes gunfire simulation or road simulation.

Transient Random Control

Transient Random control applies a chain of pulses with random nature to the shaker. The target profile power spectrum is defined in a same way as Random control, with the addition of defining transient pulse interval. Applications includes gunfire simulation or road simulation.


Time Waveform Replication

  Time Waveform Replication   Time Waveform Replication (TWR) provides precise, real-time, multi-channel control for long duration waveform duplication. TWR includes the Waveform Editor, a flexible importing and editing tools for long waveform signals. The Recording option records time stream data at the full sample rate on all input channels.

Time Waveform Replication

Time Waveform Replication (TWR) provides precise, real-time, multi-channel control for long duration waveform duplication. TWR includes the Waveform Editor, a flexible importing and editing tools for long waveform signals. The Recording option records time stream data at the full sample rate on all input channels.

  Waveform Editor     Profile Definition:   Any existing signal is treated as a profile and is imported and defined as a control.    Profile Editing:   Waveforms with any sampling rates are digitally resampled, re-scaled, filtered, and different compensation techniques may be applied to edit the profile using the EDM – Waveform Editor tool. Options for cropping, appending and inserting parts of a waveform are also provided

Waveform Editor

Profile Definition: Any existing signal is treated as a profile and is imported and defined as a control.

Profile Editing: Waveforms with any sampling rates are digitally resampled, re-scaled, filtered, and different compensation techniques may be applied to edit the profile using the EDM – Waveform Editor tool. Options for cropping, appending and inserting parts of a waveform are also provided


  App for Vibration Testing on iPad   Crystal Instruments EDM App is available for users to run vibration tests from their iPad. Purchasers of the Spider-81 vibration controller are able to download this app for free.

App for Vibration Testing on iPad

Crystal Instruments EDM App is available for users to run vibration tests from their iPad. Purchasers of the Spider-81 vibration controller are able to download this app for free.

  Spider-100 Environmental Testing Solution   The Spider-100 controller by Crystal Instruments is the control engine for environmental test THV chambers. (THV stands for Temperature, Humidity, and Vibration.)

Spider-100 Environmental Testing Solution

The Spider-100 controller by Crystal Instruments is the control engine for environmental test THV chambers. (THV stands for Temperature, Humidity, and Vibration.)

  Multiple Shaker Control (MSC) in EDM Software   Multi-shaker control (MSC) is a unique feature offered enables users to view and monitor multiple shaker tests from one PC station.  Up to 12 controllers can be accessed simultaneously.

Multiple Shaker Control (MSC) in EDM Software

Multi-shaker control (MSC) is a unique feature offered enables users to view and monitor multiple shaker tests from one PC station.  Up to 12 controllers can be accessed simultaneously.


Multiple-Input Multiple-Output (MIMO)

Multiple Input Multiple Output Vibration Control

  MIMO Shaker Systems   There are many different types of multiple shaker table arrangements based on MIMO testing applications. Multi-Exciter Single-Axis (MESA), is an application in which multiple exciters provide dynamic input to a test item along a single axis. Three axis shaker tables are available for Multiple-Exciter Multiple-Axis (MEMA) test arrangements.

MIMO Shaker Systems

There are many different types of multiple shaker table arrangements based on MIMO testing applications. Multi-Exciter Single-Axis (MESA), is an application in which multiple exciters provide dynamic input to a test item along a single axis. Three axis shaker tables are available for Multiple-Exciter Multiple-Axis (MEMA) test arrangements.

  MIMO TWR Control   MIMO Time Waveform Replication (TWR) is a popular method to use when reproducing field recorded data on a multiple shaker table in the lab. With MIMO TWR control, a time waveform profile containing multiple channels of data can be imported, pre-processed (such as bandpass filtered, etc.), and selected as a control profile.

MIMO TWR Control

MIMO Time Waveform Replication (TWR) is a popular method to use when reproducing field recorded data on a multiple shaker table in the lab. With MIMO TWR control, a time waveform profile containing multiple channels of data can be imported, pre-processed (such as bandpass filtered, etc.), and selected as a control profile.

  MIMO Random Control   MIMO random control is one of the more commonly used multiple shaker control methods, which provides precise control in real time. The device under test is subjected to true random noise with a precisely shaped spectrum with Gaussian amplitude statistics. The recording option records time-stream data at the full sample rate on all input channels.

MIMO Random Control

MIMO random control is one of the more commonly used multiple shaker control methods, which provides precise control in real time. The device under test is subjected to true random noise with a precisely shaped spectrum with Gaussian amplitude statistics. The recording option records time-stream data at the full sample rate on all input channels.

  MIMO Sine Control   MIMO Sine control is another commonly used multiple shaker control method, it provides precise control in real time. This method controls multiple sine waves with a control dynamic range up to 100 dB. With MIMO Sine control, linear spectrum profiles of Mag, or Mag/Phase are defined and assigned to multiple control channels. 

MIMO Sine Control

MIMO Sine control is another commonly used multiple shaker control method, it provides precise control in real time. This method controls multiple sine waves with a control dynamic range up to 100 dB. With MIMO Sine control, linear spectrum profiles of Mag, or Mag/Phase are defined and assigned to multiple control channels.