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Understanding Random Vibration Signals

Verifying the robustness of products (or their packaging) by sub-
jecting them to shaker-induced vibration is an accepted method 
of “improving the breed”. While shock bumps and sine sweeps 
are intuitively obvious, random shakes with their jumps and 
hissing are anything but. Even the language of a random test 
is confusing at first meeting. Let’s try to improve upon that first 
introduction to random signals!

To start with, a random time-history is simply a signal that cannot 
be precisely described by a simple equation in time; it can only 
be described in terms of probability statistics. Two of the most 
important of these statistics are the mean and the variance. The 
mean, μ, is the central or average value of a time history, x(t). It 
is the DC component of the signal and is defined by the equa-
tion:

The variance, σ2, is the averaged (unsigned) indication of the 
signal’s AC content, its instantaneous departure from the mean 
value. It is defined by: 

The square root of the variance, σ, is termed the standard devia-
tion.

These functions are closely related to a third time-domain statis-
tic, the mean-square, defined as:

function serves to smoothly taper the beginning and end of each 
time record to zero, so that the product appears to be a snap-
shot from a signal that is exactly periodic in the N Δt samples 
observed. This is necessary to preclude a spectrum-distorting 
convolution error that the FFT would otherwise make. The re-
sulting discrete complex spectrum has nominal resolution of Δf = 
1/NΔt and g amplitude units. However, every spectral amplitude 
computed is actually greater than what would result from detect-
ing the amplitudes of a bank of perfect “brickwall” analog filters 
of resolution Δf.   

Each complex spectrum is prepared for averaging by multiply-
ing each complex amplitude it by its own conjugate. This results 
in a real-valued “power” spectrum with g2 amplitude units. To 
correct the over-estimated amplitude, each squared magnitude 
is divided by the equivalent noise bandwidth, kΔf (Hz) of the 
filters synthesized by the FFT. The value of the constant, k, is 
determined by the shape of the window function. The most com-
mon of these is called a Hann window (sometimes Von Hann or 
Hanning) for which k equals 1.5. The resulting amplitude units 
are now g2/Hz and the spectrum is said to have Power Spectral 
Density scaling. 

The final step in the process is to ensemble average the current 
spectrum with all of those that have preceded it. The resulting 
average is called a Power Spectral Density (PSD) and it has 
the (acceleration) units of g2/Hz. The averaging is done using 
a moving or exponential averaging process that allows the av-
eraged spectrum to reflect any changes that occur as the test 
precedes, but always involves the most recent DNΔt/2 seconds 
of the signal. D is the specified number of degrees-of-freedom 
(DOF) in the average, numerically equal to twice the number of 
(non-overlapping) snapshots processed.

If the snapshots are taken frequently enough not to miss any 
time data, the process is said to be operating in real time (as 
it must to control the signal’s content). If the process runs fast-
er, the snapshots can actually partially overlap one-another in 
content. When the successive windows overlap, the resulting 
complex spectra contain redundant information. The degrees-
of-freedom setting is intended to specify the amount of unique 
(statistically independent) information contained in the averaged 
Control spectrum. When overlap processing is allowed, the 
number of spectra averaged must be increased by a factor of 
[100/(100-% overlap)] to compensate for this redundancy.

The square root of the mean-square is the familiar root mean-
square (RMS) value, commonly used to characterize AC voltage 
and current, as well as the acceleration intensity of a random 
shake test. Because these statistics are so frequently measured 
from signals with a zero-valued mean (no DC), the differentiation 
between standard deviation and RMS and between variance 
and mean-square has become unfortunately blurred in modern 
discussions.

The Control spectrum you measure during a random shake test 
is also a statistical description. The measured variable is (nor-
mally) the output of an accelerometer mounted to the shaker 
table. The sensor’s voltage output is scaled to engineering units 
of acceleration, typically gravitational units (g’s) and sampled at 
a fixed interval, Δt. This time-sampled history is transformed to 
the frequency domain using the Fast Fourier Transform (FFT). 
In this process, a series of “snapshots” from the continuous time 
waveform are taken and dealt with sequentially. 

Each snapshot is multiplied by another sampled time history of 
the same length, called a window function. The multiplied window 



PAGE 2 | CRYSTAL INSTRUMENTS

The resulting PSD describes the frequency content of the signal. 
It also echoes the mean and the variance. The (rarely displayed) 
DC value of the PSD is the square of the mean. For a controlled 
acceleration (or velocity) shake, this must always be zero – the 
device under test cannot depart from the shaker during a suc-
cessful test! Since the mean is zero, the RMS value is exactly 
equal to the standard deviation, σ. The area under the PSD 
curve is the signal’s variance (its “power”), σ2. The term power 
became attached to such “squared spectra” when the calcula-
tion was first applied to electrical voltages or currents. (Recall 
that the power dissipated by a resistor can be evaluated as i2R 
or E2/R.)

It bears mentioning that long before real-time control of a ran-
dom vibration signal was possible, random vibration test were 
conducted using a “white- noise” generator and a manually ad-
justed equalizer to shape the spectrum. Filter-based signal anal-
ysis was employed with a human “in the loop” to achieve some 
semblance of spectral control. In that same era, the PSD was 
formally defined by the classic  Wiener-Khintchine relationship 
as the (not very fast!) Fourier transform of an Autocorrelation 
function. An autocorrelation is defined by the equation:

In essence, the autocorrelation averages the time history multi-
plied by a time-delayed image of itself. The symmetric function 
of time that results was often used to detect periodic compo-
nents buried in a noisy background. The “squaring” of an au-
tocorrelation would reproduce the periodic signal with greater 
amplitude, rising above the random noise background. In the 
process, it echoed the signal’s mean and variance. When you 
autocorrelate x(t), the Rxx(τ) amplitude at lag time τ= 0 is equal 
to σ2 + μ2. As the lag time approaches either plus or minus infin-
ity, the correlation amplitude collapses to μ2. Thus if the signal 
is purely random, the autocorrelation amplitude varies smoothly 
between the mean-square and the square of the mean. 

Clearly, the mean and variance dominate statistical measure-
ments in both the time and frequency domains. They are also re-
flected by so-called amplitude domain measurements. The most 
basic of these is called a histogram. To measure a histogram, 
break a signal’s potential amplitude range into a contiguous se-
ries of N amplitude categories (i.e. x is between a and b) and 
associate a counter with each category. Initialize the measure-
ment process by zeroing all of the counters. Take a sample from 
the time-series in question, find the category its amplitude fits 
within and, increment the associated counter by one. Repeat 
this action thousands of time. Plot the counts retained (vertical-
ly) against their category amplitude (horizontally). You have just 
measured a histogram.

A histogram may also be used to graphically present tabular 
measurements from an experiment or even gaming odds. For 
example, consider tossing dice. If you toss a single (honestly 
constructed) die, any one of its six numbered faces may face up 
and the odds are 1 in 6 that any specific number will be rolled. 
As a histogram, this amounts to 1 count for each of the pos-
sible tossed numbers, 1 through 6, a rectangular distribution. 
Now consider rolling two dice (or one die twice) and recording 
their sum. There are now 36 possible combinations that might 
be rolled with sums spanning 2 to 12. However, the 11 different

possible sums are not equally probable. There are six combina-
tions totaling 7, five totaling either 6 or 8, four totaling 5 or 9, 
three totaling 4 or 10, two totaling 3 or 11 and only one way to 
roll either a 2 or a 12. The histogram now takes on a triangular 
shape. Finally, consider what happens when you roll three dice. 
The number of combinations increases to 216 with 16 different 
possible sums. The likelihood of a 10 or 11 is 27 times as prob-
able as rolling a 3 or an 18. With three dice in the game, the 
histogram takes on a bell-shaped curve. These three histograms 
are plotted below for comparison.

The three histograms have different independent-variable 
spans. If we choose to plot the averaged (mean) number tossed 
instead of the sums, we can align the three histograms horizon-
tally, making comparisons between the three plots simpler. If we 
now change the vertical scale of each trace so that each curve 
bounds a (dimensionless) unit area, we have converted the 
three histograms to Probability Density Functions (PDF). Note 
that if the independent variable (horizontal axis) carries an engi-
neering unit, the vertical (probability density) axis must bear the 
reciprocal of that unit to render the bounded area dimensionless.
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Several important things happen when a histogram is scaled 
as a probability density function. Since the area under this p(x) 
curve is 1.0, and the curve spans all known possibilities of the in-
dependent variable, x, it may be used to evaluate the probability 
of x falling between two known bounds, say Xa and Xb.

That is, since:

defines the probability that -∞ ≤ x ≤ ∞, 

The definite integral

defines the probability that x is between Xa and Xb in value.

Of equal importance, the first two integral moments of the PDF 
return the mean and variance of the signal p(x) characterizes. 
Specifically:

Two higher moments are pertinent to controlled random vibra-
tion tests. These are:

a measure of the signal’s amplitude symmetry (about the mean), 
and:

which describes the spread of the extreme-amplitude “tails” of 
the PDF.

Before we continue, reflect for a moment on the three PDFs plot-
ted from our dice-throwing model. Note the rapid convergence 
from a rectangular PDF towards a bell-shaped one as inde-
pendent variables are added or averaged together. This clear 
progression is observed in all manner of natural phenomena. 
Since most occurrences involve the summation or integration of 
many independent component happenings, many things in na-
ture tend to have bell-shaped PDFs. Pass a signal of almost any 
PDF shape through a filter or averaging process (be it electrical 
or mechanical) and the output will tend strongly to the naturally 
occurring mean-centered symmetric bell curve.

Johann Carl Friedrich Gauss (1777-1855) had a strong 
and intuitive understanding of this natural tendency. 

He proposed a mathematical model for the bell-shaped p(x) that 
has stood the test of centuries and is at the center of our under-
standing of random signals and variables. His classic definition 
for p(x) is:

The classic Gaussian PDF is plotted above. Note that the “tails” 
actually extend to ±∞. To appreciate this point, we repeat the 
Gaussian PDF plot using a logarithmic vertical axis. This scaling 
is frequently done in vibration work, but rarely shown in statistic 
texts.
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If an experimental measurement matches the Gaussian PDF 
model, the Gaussian model can then be used to draw many 
important inferences about the measurement. Many statistical 
curve-matching tests are available to establish if a measurement 
is Gaussian. These include the Kolmogorov-Smirnov (KS), Sha-
piro-Wilk and Anderson-Darling tests. For practical purposes, 
most well-fixtured and well-conducted random shake tests will 
produce data that pass any of these model-matching statistical 
tests for Gaussian behavior. 

Important conclusions that result from deeming a measured 
Control acceleration Gaussian include:

●● The random Control acceleration signal spends 68.3% of its 
time within ± 1σ, 95.5% within ± 2σ, and 99.7% within ± 3σ. 
For practical purposes, the signal has a crest factor (peak to 
RMS ratio) of 3.

●● The Skew is μ(3σ2+μ2) = 0  (as μ is 0)

●● The Kurtosis is 3σ4 + 6σ2μ2 + μ4 = 3σ4 (for the same reason)

Further, we find that if a time-history is Gaussian, the real and 
imaginary components of its Fourier Transform are also (inde-
pendently) Gaussian distributed variables. Further, the vector 
resultant magnitude of those Gaussian components exhibits a 
different PDF; the spectral magnitude is Rayleigh distributed. Of 
far greater interest is that the sum of the squares of the real 
and imaginary components (the power spectrum magnitude) is 
a Chi-square (χ2) distributed variable, as is the variance. 

Knowing that the Control PSD has χ2 distributed spectral mag-
nitude allows construction of a confidence interval about any g2/
Hz value. The curves above illustrate statistically reasonable 
bands of variation (±dB) for a g2/Hz spectral value with regard to 
two variables: Confidence and Degrees-of-Freedom. Statistical 
Confidence is usually expressed as a percentage. For example, 
99.9% Confidence is shorthand for saying 99.9% of the spectral 
Lines in a PSD will be within the curve-specified upper and lower 
bounds. So if you average using 200 DOF, you are 90% certain 
that all of your PSD measured magnitudes are correct within ± 
1 dB.

We have just begun to scratch the surface of the things that can 
be learned and ascertained about random signals with Gaussian 
mean and Chi-square variance.  But, that is the stuff of future 
postings! 
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