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BASICS OF STRUCTURAL VIBRATION TESTING AND ANALYSIS

Introduction 
Structural vibration testing and analysis contributes to progress 
in many industries, including aerospace, auto-making, manufac-
turing, wood and paper production, power generation, defense, 
consumer electronics, telecommunications and transportation. 
The most common application is identification and suppression 
of unwanted vibration to improve product quality. 

This application note provides an introduction to the basic con-
cepts of structural vibration. It presents the fundamentals and 
definitions in terms of the basic concepts. It also discusses prac-
tical applications and provides real world examples. 

This paper covers the following topics: 

 ● Basic terminology 
 ● Models of single and multiple degree of freedom 
 ● Continuous structure models 
 ● Measurement techniques and instrumentation 
 ● Vibration suppression methods 
 ● Modal analysis 
 ● Operating deflection shape analysis 

Basic Terminology of Structural Vibration 
The term vibration describes repetitive motion that can be mea-
sured and observed in a structure. Unwanted vibration can cause 
fatigue or degrade the performance of the structure. Therefore 
it is desirable to eliminate or reduce the effects of vibration. In 
other cases, vibration is unavoidable or even desirable. In this 
case, the goal may be to understand the effect on the structure, 
or to control or modify the vibration, or to isolate it from the struc-
ture and minimize structural response. 

Vibration analysis is divided into sub-categories such as free vs. 
forced vibration, sinusoidal vs. random vibration, and linear vs. 
rotational vibration. 

Free vibration is the natural response of a structure to some im-
pact or displacement. The response is completely determined 
by the properties of the structure, and its vibration can be un-
derstood by examining the structure’s mechanical properties. 
For example, when you pluck a string of a guitar, it vibrates at 
the tuned frequency and generates the desired sound. The fre-
quency of the tone is a function of the tension in the string and is 
not related to the plucking technique. 

Forced vibration is the response of a structure to a continuous 
forcing function that causes the structure to vibrate at the fre-
quency of the excitation. For example, the rear view mirror on 
a car will always vibrate at the frequency associated with the 
engine’s RPMs. In forced vibration, there is a deterministic re-
lationship between the amplitude of the corresponding vibration 
level and the forcing function. The relationship is dictated by the 
characteristics of the structure. 

Sinusoidal vibration is a special type of vibration. The structure 
is excited by a forcing function that is a pure tone with a single 
frequency. Sinusoidal vibration is not very common in nature, but 
it provides an excellent engineering tool that enables us to un-
derstand complex vibrations by breaking them down into simple, 
one-tone vibrations. The motion of any point on the structure 
can be described as a sinusoidal function of time as shown in 
Figure 1 (top). 

Random vibration is very common in nature. The vibration a 
driver feels when driving a car results from a complex combina-
tion of sources, including rough road surface, engine vibration, 
wind buffeting the car’s exterior, etc. Instead of trying to quantify 
each of these effects, they are commonly described by using 
statistical parameters. Random vibration quantifies the average 
vibration level over time across a frequency spectrum. Figure 1 
(bottom) shows a typical random vibration versus time plot.

Figure 1. Sinusoidal vibration (top) and random vibration (bottom).

Rotating imbalance is another common source of vibration. The 
rotation of an unbalanced machine part can cause the whole 
rotating machine to vibrate. The imbalance generates the forc-
ing function that affects the structure. Examples include a wash-
ing machine, an automobile engine, shaft system, steam or gas 
turbines, and computer disk drive. Rotational vibration is usually 
harmful and unwanted, and the way to eliminate or minimize it is 
to properly balance the rotating part of the machine. 

The common element in all these categories of vibration is that 
the structure responds with some repetitive motion that is re-
lated to its mechanical properties. By understanding the basic 
structural models, measurement and analysis techniques, it is 
possible to successfully characterize and treat vibration in struc-
tures. 

Time and Frequency Analysis 
Structural vibration can be measured by using electronic sen-
sors that convert vibration motion into electrical signals. By ana-
lyzing the electrical signals, the nature of the vibration can be 
understood. Signal analysis is generally divided into time and 
frequency domains; each domain provides a different view and 
insight into the nature of the vibration. 

Time domain analysis starts by analyzing the signal as a func-
tion of time. An oscilloscope, data acquisition device, or dynamic 
signal analyzer can be used to acquire the signal. Figure 2 il-
lustrates a structure model, such as a single-story building, re-
sponding to an impact of vibration that is measured at point A 
and plotted versus time. The dashed lines indicate the motion of 
the structure as it vibrates about its equilibrium point. 
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Figure 2. Mechanical structure responds with vibration plotted versus time.

The plot of vibration versus time provides information that helps 
characterize the behavior of the structure. Its behavior can be 
characterized by measuring the maximum vibration (or peak) 
level, or finding the period (time between zero crossings), or es-
timating the decay rate (the amount of time for the envelope to 
decay to near zero). These characteristic parameters are the 
typical results of time domain analysis. 

Frequency analysis also provides valuable information about 
structural vibration. Any time history signal can be transformed 
into frequency domain. The most common mathematical tech-
nique for transforming time signals into frequency domain is 
called Fourier Transform, named after the French Mathematician 
Jean Baptiste Fourier. The mathematical processing involved is 
complex, but today's dynamic signal analyzers race through it 
automatically in real-time. 

Fourier Transform theory states that any periodic signal can be 
represented by a series of pure sine tones. Figure 3 illustrates 
how a square wave can be constructed by adding up a series 
of sine waves; each of the sine waves has a frequency that is a 
multiple of the fundamental frequency of the square wave. The 
amplitude and phase of each sine tone must be carefully chosen 
to get just the right waveform shape. When using a limited num-
ber of sine waves as in Figure 3, the result resembles a square 
wave, but the composite waveform is still ragged. 

In Figures 3 and 4, the third graph shows the amplitude of each 
sine tones. In Figure 3, there are three sine tones, and they are 
represented by three peaks in the third plot. The frequency of 
each tone is represented by the location of each peak on the fre-
quency coordinate in the horizontal axis. The amplitude of each 
sine tone is represented by the height of each peak on the verti-
cal axis. In Figure 4, there are more peaks as there are more 

Figure 3. A square wave can be constructed by adding pure sine tones. 

As more and more sine waves are added in Figure 4, the result 
looks more and more like a square-wave.

Figure 4. As more sine tones are added the square waveform shape is 
improved.

sine tones added together to form the square wave. This third 
plot can be interpreted as the Fourier Transform of the square 
wave. 

In structural analysis, usually time waveforms are measured and 
their Fourier Transforms are computed. The Fast Fourier Trans-
form (FFT) is a computationally optimized version of the Fourier 
Transform. The third plot in Figure 4 also shows the measure-
ment of the square wave with a signal analyzer that computes its 
Fast Fourier Transform. With testing experience, structural vibra-
tion can be understood by studying frequency domain spectrum.

The Decibel dB Scale 
Vibration data is often displayed in a logarithmic scale called 
Decibel (dB) scale. This scale is useful because vibration levels 
can vary from very small to very large values. When plotting 
the whole data range on most linear scales, the small signals 
become virtually invisible. The dB scale solves this problem 
because it compresses large numbers and expands small 
num¬bers. A dB value can be computed from a linear value per 
following equation,
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where xref is a reference number that depends on the type of 
measurement. Comparing the motion of a mass to the motion of 
the base, base measurement is used as the reference in the de-
nominator and the mass as the measurement in the numerator. 

In dB scale, if the numerator and denominator are equal, the lev-
el is zero dB. A level of +6 dB means the numerator is a factor of 
two times the reference value, and +20 dB means the numerator 
is a factor of 10 times the reference. 

Figure 5 shows an FFT spectrum in linear scale on the top, and 
dB scale on the bottom. Notice that the peak near 200 Hz is 
nearly indistinguishable on the linear scale, but very pronounced 
with the dB scale. 

Figure 5. The dB scale allows us to see both large and small numbers 
on the same scale as shown for the FFT with linear scale on the top and 
dB scale on the bottom.

Structural Vibration 
Structural vibration can be complex, so let's start with a simple 
model to derive some basic concepts and build up to more ad-
vanced models. The simplest vibration model is the single-degree-
of-freedom, or a mass-spring-damper model. It consists of a simple 
mass (M) that is suspended by an ideal spring with a known stiff-
ness (K), and a dashpot damper from a fixed support. A dashpot 
damper is like a shock absorber in a car. It produces an oppos-
ing force that is proportional to the velocity of the mass. 

Figure 6. Simple Mass-Spring-Damper Vibration Model

The mass is a measure of the density and amount of the materi-
al. A marble has a small mass and a bowling ball has a relatively 
larger mass. The stiffness is a measure of how much force the 
spring will pull when stretched by a given amount. A rubber band 
has a small stiffness and a car leaf spring has a relatively large 
stiffness. A sports car with a tight suspension has more damping 
than a touring car with a soft suspension. When the touring car 
hits a bump, it oscillates up and down for a longer time than the 
sports car. Different materials have different damping qualities. 
Rubber, for example, has much more damping than steel. 

If the mass is displaced by pulling down and releasing, the mass 
will respond with motion similar to Figure 7. The mass will oscil-
late about the equilibrium point and after every oscillation, the 
maximum displacement will decrease due to the damper ele-
ment, till the motion becomes so small that it is undetectable. 
Eventually the mass element will stop moving. 

In this model, the factors that affect vibration are completely 
characterized by the parameters M, K and C. Knowing these 
values, the structural response to excitation can be predicted 
exactly. 

Figure 7. Free Vibration of Mass-Spring-Damper Model

Figure 7 shows that the time between every oscillation is same. 
The time plot crosses zero at regular intervals. The time for the 
displacement to cross zero with a positive slope to the next zero 
crossing with positive slope is named the period. It is also related 
to the frequency of oscillation. 

Frequency can be computed by dividing one by the period value. 
For the mass-spring-damper model subject to free vibration, the 
frequency of oscillation is completely determined by the param-
eters M, K, and C. It is called the natural frequency denoted by 
the symbol fn. Frequency is measured in cycles per second with 
units of Hertz (Hz). Assuming the damping is small, then the 
mathematical relationship is given by

A larger stiffness will result in a higher fn, and a larger mass will 
result in a lower fn. 

Figure 7 also reveals something about damping. Theory tells us 
that the amplitude of each oscillation will diminish at a predict-
able rate. The rate is related to the damping factor C. Usually 
damping is described in terms of the damping ratio ξ. That ratio 
is related to C by 
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The damping ratio can vary from zero to infinity. When it is small 
(less than about 0.1), the system is lightly damped. When ex-
cited, it will oscillate, or ring, for a long time as shown in Figure 
8. When the damping ratio is large, the system is 'over damped'. 
It will not oscillate at all and it may take a long time to return to 
its equilibrium position. When the damping ratio = 1, the system 
is 'critically damped' and will return to the equilibrium position in 
the shortest possible time. 

Figure 9. Mass-Spring-Damper Model responds to forced vibra-
tion with change in amplitude and phase: A-mass vibration, B-
base displacement.

The relative amplitude and phase of the mass displacement will 
vary with the frequency of the base excitation. Varying the base 
frequency and recording the corresponding mass displacement 
amplitude (divided by the base displacement amplitude) and the 
phase, results in a plot of the vibration amplitude and phase ver-
sus excitation frequency. 

Figure 10 shows the results for three different values of the 
damping ratio (ξ). In all cases, the amplitude ratio (Magnitude) is 
1 (or zero dB for dB scale) for low frequencies. This means that 
the amplitudes are equal at low frequencies. As the frequency 
increases, the magnitude rises to some maximum value. The 
frequency of this peak is fn, the natural frequency. At frequen-
cies above fn, the magnitude falls of at a constant rate. This plot 
is known as a Bode Diagram. Note the horizontal axis is of log 
scale with unit Hz. Note that the peak is higher for light damping. 
For critical damping (red curve) and over damping (not shown), 
the magnitude does not increase above 1 (or 0 dB).

The lower plot in Figure 10 shows the phase relation between 
the base and the mass for different frequencies. At low frequen-
cies below fn, the phase is zero degrees meaning that the mass 
is in phase with the base. When the base vibration frequencies 
coincide with fn (at resonance), the phase is 90 degrees. At high 
frequencies, the phase is 180 degrees; the mass is out of phase 
with the base and they move in opposite directions. Note that 
different damping ratios affect the slope of the phase change.  

The Q Factor is a common term used to represent how under-
damped an structure is. Vibration theory shows that the damping

Figure 10. Bode Diagram of the vibration of the mass-spring-damper 
system with A: ζ = 0.1, B: ζ = 0.5, C: ζ = 1

ratio is related to the sharpness of the peak of the magnitude 
plot. The damping ratio, ζ, can be determined by computing Q, 
defined as the resonant frequency divided by the half power 
bandwidth around the peak at fn. Q factor is computed as: 

where fn  is the resonant frequency at the peak in Hz; f1  and f2  
are the half power points measured -3 dB down from the peak 
as shown in Figure 11. 

Another way to measure damping is to simply record the peak 
amplitude ratio. However this should not be confused with the Q 
factor as they are not equivalent. 

Figure 11. The Q factor is computed by dividing the peak 
frequency by the half power bandwidth.

The single-degree-of-freedom, mass-spring-damper model is an 
over simplification of most real structures. The concepts and ter-
minologies introduced in analyzing how free and forced vibration 
affect this simple model also apply to analyzing more complex 
structures. 
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Multi-Degree of Freedom Model 
The first model introduced in this paper is a single-story building. 
This model can be extended to a two or three story building re-
sulting in a two or three degree of freedom system. The two story 
building model can be rep¬resented by interconnecting simple 
mass-spring-damper systems as shown in Figure 12. 

Figure 12. A two story building can be modeled as a two degree 
of freedom model and simplified into two coupled mass-spring-
damper systems.

The coupled mass-spring-damper system will have two reso-
nant frequencies. This system is characterized by a Bode Dia-
gram similar to Figure 13. The damping of each resonance can 
be determined using the Q factor technique. Note that the first 
resonance is more light¬ly damped compared to the second 
resonance judging from the sharpness of the peaks.

Figure 13. Bode diagram of 2 mass-spring-damper system.

In the models considered so far, mass is lumped into one point. 
A continuous structure such as a beam or string where the mass 
is distributed over volume requires another type of model. Figure 
14 illustrates a beam structure pinned at both ends so that it can 
rotate but cannot translate. Under excitation, the beam will de-
form, vibrate and deform per different shapes depending on the 
frequency of the excitation as well as mounting method (bound-
ary conditions) of the beam ends. The beam will have a first 
resonant frequency at which all its points will move in unison; at 
the first resonant frequency, the beam will take the shape shown 
to the right in Figure 14 labeled First Mode Shape. At a higher 
frequency, the beam will have a second resonant frequency and 
mode shape, and a third, and fourth, etc. Theoretically there are 
an infinite number of resonant frequencies and mode shapes. 

However at higher frequencies, the structure acts like a low-pass

filter and the vibration levels get smaller and smaller. The higher 
modes are harder to be excited and have relatively less effect on 
the overall vibration of the structure. 

Figure 14. A beam fixed at both ends is an example of a continuous 
structure model.

Figure 15 shows an experimentally measured Bode Diagram for 
a 1 x 0.25 inch cross section and 8 inch long steel beam. There 
are many resonant frequencies, beginning as low as 265 Hz 
and many higher ones across the frequency range. Around ev-
ery resonant peak, its phase goes through a 180 degree phase 
shift. Notice that when the resonances are well separated per 
frequency axis, the frequency response function of each reso-
nance is similar to that of a simple spring-mass-damper system. 

Figure 15 A typical Bode Diagram for a beam.

This overview of structural vibration analysis shows that the field 
has many complexities and considerable depth. Fortunately for 
technical and non-technical people alike, the fundamental phe-
nomena and concepts apply to models no matter it is simple or 
complex, and they can be represented by either single-degree-
of-freedom model, multiple-degree-of-freedom model, or con-
tinuous structure model. 

Vibration Measurements 
Vibration Sensors 
Structural vibration is commonly measured with electronic sen-
sors called accelerometers. These sensors convert an accelera-
tion signal to an electronic voltage signal that can then be mea-
sured, analyzed and recorded with electronic hardware. There 
are many types of accelerometers. Some common one requires 
a power supply connected by a cable to the accelerometer as 
shown in Figure 16. Some accelerometers have internal circuitry 
that accepts the DC power from the analyzer’s ADC channel. 
The dynamic signal analyzer includes a calibration setting pa-
rameter for each transducer that allows the voltage signal to be 
converted into the measurement of acceleration, i.e., g or m/s2.
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Figure 16. Typical instrumentation for accelerometer.

Manufacturers calibrate each accelerometer and supply a sensi-
tivity value. For example, a 100 mV/g nominal sensitivity accel-
erometer will have a calibration value of 102.3 mV/g. Measure-
ment accuracies depend on using the correct sensitivity value in 
the signal analyzer and on using an accelerometer with the right 
range of sensitivity for the application. A high sensitivity sensor 
with 1000 mV/g sensitivity may not be appropriate for an appli-
cation of high acceleration level. In this case the too high volt-
age from the sensor will saturate the input channel circuitry on 
the signal analyzer. If the acceleration level is very low, a small 
sensitivity accelerometer, such as 10 mV/g one, may produce 
a signal that is too weak to measure and affect the accuracy of 
measurement.

Sensitivity also has an important impact on the signal to noise 
ratio. Signal to noise ratio is the ratio of the signal level divided 
by the noise floor level and typically measured in dB scale as 

All sensors and measurement hardware are subject to electronic 
noise. Even when the structure is not vibrate, electronic noise 
from the measurement elements may still shows some small 
acceleration level. This is due to the sensor cables picking up 
electronic noise from stray signals in the air, from noise in the 
power supply or from internal noise in the analyzer electronics. 
High quality hardware is designed to minimize the internal noise 
making low signal measurements possible. The signal to noise 
ratio limits the lowest measurement that can be made. 

For example, if the noise floor is 1 mV, then with a typical 100 
mV/g accelerometer, the smallest level that can be read, can be 
computed as 

If a 20 g acceleration is measured with this accelerometer, then 
the signal to noise ratio can be computed as 

In this case, the analyzer will always show a level of at least 0.01 
g because of the noise floor. It is a good practice to not trust a 
measurement with a signal to noise ratio that is below 3:1 or 4:1. 
When the signal to noise ratio is too low, one solution is to use 
an accelerometer with a higher sensitivity. 

For example, with 1 mV of noise, the smallest level that can be 
read by a 1000 mV/g accelerometer can be computed as

Some accelerometer power supplies include a gain setting that 
multiplies the signal by 1, 10, or 100. Unfortunately, this gain set-
ting also amplifies the noise that is picked up by the wires and 
inherent in the sensor and power supply. In most cases, increas-
ing the power supply gain will not solve signal to noise issues. 

Excitation Methods 
In some applications, vibration measurements are made during 
normal operation of a structure or machine. For example, an 
automobile can be instrumented with many accelerometers and 
driven on road or a test track while vibration signals are mea-
sured and analyzed. Many other cases require a more tuned 
excitation to yield reproducible and predictable results. The two 
most common methods are the impact hammer and electrody-
namic shaker. 

An impact hammer, as shown in Figure 17, is a specialized 
measurement tool that produces short duration vibration levels 
by striking the structure at certain point. The hammer incorpo-
rates a sensor (called a force sensor) that produces a voltage 
signal proportional to the force of impact. This enables precise 
measurement of the excitation force. An impact hammer is of-
ten used for modal analysis of structures where use of a shaker 
is not convenient; examples are in the field or with very large 
structures. Different impact tip materials allow tailoring of the 
frequency content of the impact force. For low frequency mea-
surements, a soft rubber tip concentrates the excitation energy 
in a low narrow frequency range. A hard metal tip gives good 
excitation energy content out to high frequencies.

Figure 17. Impact hammer instrumented with a force sensor to 
measure the excitation force and different hardness tips

For laboratory vibration measurements, modal shakers are the 
instruments of choice. Modal shakers are rated by the force they 
produce. Modal Shakers vary in size and force from several 
pound force to hundred pound force. 

Figure 18. Modal shakers are used in laboratory measurements and vary 
in size from small to large.
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Modal Shaker is connected to structures by means of a thin 
metal rod called a stinger in general. Force sensor is mounted 
on the structure, and then connected through the stinger to the 
modal shaker. There is a type of sensor called impedance head, 
which is a combination of force sensor and accelerometer in 
one. Using this sensor, both the driving force and acceleration 
level at the driving point on the structure can be measured si-
multaneously. 

A dynamic signal analyzer incorporates a source type of signal, 
which is amplified and sent to the modal shaker to excite the 
structure under test.  

Dynamic Signal Analyzers 
The most common equipment for analyzing vibration signals is a 
computer based data acquisition system called a dynamic signal 
analyzer (DSA) (see Figure 19). The first generation DSAs used 
analog tracking filters to measure frequency response. Modern 
analyzers use digital technology and are far faster and more 
versatile. Using disk drives to store large volumes of data for 
post processing, they can record all sorts of data including time, 
frequency, amplitude and statistic data. 

Figure 19. Crystal Instruments Dynamic Signal Analyzer family

A modern DSA consists of many electronic modules as shown 
in Figure 20. First, the analyzer measures electronic signals with 
an analog front end that may include special signal conditioning 
such as sensor power supply, TEDS (transducer electronic data 
sheets that read the calibration and other information from a chip 
embedded in the sensor), adjustable voltage gains settings and 
analog filters. Next, the system converts the analog signal to a 
digital format via an analog to digital converter (ADC). After the 
signal is digitized, the system processes it with a digital signal 
processor (DSP), which is a mini-computer optimized to do rapid 
mathematical calculations. The DSP performs all required cal-
culations, including additional filtering, computation of time and 
frequency measurements, and management of multiple channel 
signal measurements. 

Most modern signal analyzers connect with a PC for the setup, 
display ad reporting functions. The DSP interfaces with the PC; 
a software user interface displays results on the PC screen. 
Some older model of analyzers did not have a PC interface; they 
include buttons and a display screen on the analyzer chassis. 
The PC interface speeds and simplifies test setup and reporting. 

Figure 20. Signal analyzer architecture 

Quantization: Analog to Digital Conversion and Effective 
Bits 
One measure of DSA quality is the bit count of the analog to 
digital conversion (Demler, 1991). When an analog signal is 
converted into a digital signal, it undergoes quantization, which 
means that a perfectly smooth analog signal is converted into a 
signal represented by stair steps as shown in Figure 21. To ac-
curately represent an analog signal, the stair steps of the digital 
signal should be as small as possible. The step size depends on 
the number of "bits" in the ADC and the voltage range of the ana-
log input. For example, if the voltage range is 10 volts and the 
ADC uses 16 bits, the smallest step size can be computed as, 

 Step size = 10 volts divided by 216 = 0.15 millivolts 

A 24-bit ADC, reduces the step size to 

 Step size = 10 volts divided by 224 = 0.0006 millivolts 

The 24-bit ADC has a step size that is 256 times smaller than 
the step size of the 16-bit ADC. Twenty four bit is the highest bit 
count available in modern DSAs. A 24-bit ADC can accurately 
measure large signals and small signals at the same time. ADCs 
with lower bit counts require the user to change to lower voltage 
range when measuring a low level signal in order to achieve the 
similar measurement accuracy. 

Figure 21. When an analog signal is converted to digital the 
smooth analog signal becomes a stair step signal with the size of 
the step depending on the bit count of the ADC.

The bit count is also related to dynamic range of the DSA, anoth-
er important measurement quality consideration. Dynamic range 
shows the ratio of the largest signal to the smallest signal that a 
DSA can accurately measure; dynamic range is reported in the 
dB scale. A typical 24-bit ADC with good low-noise performance 
will have 110 - 120 dB of dynamic range. Dynamic range is also 
affected by the noise floor of the device. 

Measurement Types: Time vs. Frequency, FFT, PSD, FRF, 
Coherence 
Most analyzers carries out time and frequency measurements. 
Time measurements include capturing transient signals, stream-
ing long duration events to the computer disk drive, and statistic 
measures. The sampling rate, another measure of DSA qual-
ity, is related to time measurements. High speed ADCs can at-
tain sampling rates of up to 100,000 samples per second (100 
kHz). Some analyzers incorporate multiplexers that use one 
ADC sampling at a high rate and switch it between the different 
input channels. For example, if the DSA has 8 channels and a 
multiplexing 100 kHz ADC, it will only sample at 12.5 kHz per 
channel. High-quality DSAs do not use multiplexers and provide 
high sampling rates regardless of the number of input channels. 
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Most DSAs can compute a variety of frequency meas¬urements 
including Fast Fourier Transform, Power Spectral Density, Fre-
quency Response Functions, Coherence and many more. The 
DSP computes these signals from digitized time data. Time data 
is digitized and sampled into the DSP block by block. A block is 
a fixed number of data points in the digital time record. Most fre-
quency functions are computed from one block of data at a time. 

Fast Fourier Transform (FFT) is the discrete Fourier Transform of 
a block of time signal. It represents the frequency spectrum of 
the time signal. It is a complex signal meaning that it has both 
magnitude and phase information and is normally displayed in a 
Bode Diagram. Figure 22 shows the FFT of a square wave mea-
sured by a Crystal Instruments DSA Analyzer. The horizontal 
axis shows frequency ranging from zero to 225 Hz; the vertical 
axis is m/s2 ranging from 0 to 14 m/s2. A square wave is com-
posed of many pure sine waves indicated by the discrete peaks 
at even intervals in the FFT.

Figure 22. FFT of a square wave computed with Crystal Instruments 
DSA Analyzer.

Power Spectral Density (PSD) is computed from the FFT by mul-
tiplying the FFT by its complex conjugate. The result of this op-
eration is a real signal with power units (squared values) known 
as power spectrum. The phase information is gone, leaving only 
the magnitude data. The final computation is the division of the 
resulting power spectrum by the frequency increment. This step 
normalizes the measurement to the FFT "filter bandwidth" and 
converts the power spectrum into a density function. The advan-
tage over non-density representations of spectra is that the level 
will not change when the frequency resolution is modified. The 
units of an acceleration signal PSD are (m/s)2/Hz. PSD mea-
surements are used to analyze "stationary" signals such as ran-
dom noise. Figure 23 shows the PSD of a broadband vibration 
signal displayed in LogMag units. 

Figure 23. Power Spectral Density of broad band random vibration

Frequency Response Function (FRF) is computed from two signals. 
It is sometimes called a "transfer function." The FRF describes 
the level of one signal relative to another signal. It is common-
ly used in modal analysis where the vibration response of the 
structure is measured relative to the force input of the impact 
hammer or shaker. FRF is a complex signal with both magnitude 
and phase information. 

Coherence is related to the FRF and shows the degree of correla-
tion of one signal with a second signal. Coherence varies from 
zero to one and is a function of frequency. In modal analysis, 
this function shows the quality of a measurement. A good im-
pact produces a vibration response that is perfectly correlated 
with the impact, indicated by a coherence plot that is near one 
over the entire frequency range. If there is some other source 
of vibration, or noise, or the hammer is not exciting the entire 
frequency range, the coherence plot will drop below one in some 
regions. 

Most DSAs can compute many other time and frequency based 
signals including cross power spectrum, auto and cross correla-
tion, impulse response, histograms, octave analysis, and order 
tracks. 

Triggering, Averaging & Windowing 
Getting good measurements from an analyzer requires careful 
selection of the measurement settings for the averaging, trigger-
ing, and windowing parameters. 

Triggering is a technique for capturing an event when you do not 
know exactly when it will occur. A trigger can start data acquisi-
tion and processing when a user-specified voltage level is de-
tected in an input channel. For example, you can set up a trigger 
to capture a hammer impact. After arm the trigger, the analyzer 
will wait until the impact occurs before it starts acquiring data. 

Averaging improves the quality of the measurement. It applies 
to both the frequency and time domains. Frequency domain 
averaging uses multiple data blocks to "smooth" the measure-
ments. You can average signals with a linear average where all 
data blocks have the same weight; or you can use exponential 
weighting. In this case, the last data block has the most weight 
and the first has the least. Averaging acts to improve the esti-
mate of the mean value at each frequency point; it reduces the 
variance in the measurement. Time domain averaging is useful 
in measuring repetitive signals to suppress background noise. 
An impact test is good example of repetitive signals. Both the 
force and acceleration signals are the same for each measure-
ment. This assumes that the trigger point is reliable. The pres-
ence of high background noise may adversely affect the reliabil-
ity of the trigger. 

Windowing is a processing technique used when computing FFTs. 
Theoretically, the FFT can only be computed if the input signal is 
periodic in each data block (it repeats over and over again and 
is identical every time). When the FFT of a non-periodic signal is 
computed, the FFT suffers from 'leakage.' Leakage is the effect 
of the signal energy smearing out over a wide frequency range. 
If the signal were periodic, it would be in a narrow frequency 
range. Since most signals are not periodic in the data block 
time period, windowing is applied to force them to be periodic. A 
windowing function should be exactly zero at the beginning and 
end of the data block and have some special shape in between. 
This function is then multiplied with the time data block, and this 
forces the signal to be periodic. 
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Figure 24 shows the effect of applying a Hanning window to a 
pure sine tone. The left top graph is a sine tone that is perfectly 
periodic in the time window. The FFT (left-bottom) shows no 
leakage; it is narrow and has a peak magnitude of one, which 
represents the magnitude of the sine wave. The middle-top 
plot shows a sine tone that is not periodic in the time window. 
This results in leakage in the FFT (middle-bottom). Applying the 
Hanning window (top-right), reduces the leakage in the FFT 
(bottom-right). 

Figure 24. Hanning window (right) reduces the effect of 
leakage (middle)

FFT Settings: dF, dT, Time Window, Span 
Other important settings on the DSA include time and frequency 
resolution, and time and frequency span. A data block consists 
of some fixed number of data points that represent the digitized 
time record. The time between the points is called the time reso-
lution, or dT. The time span of the data block can be computed 
from dT multiplied by the number of points. These parameters 
are set on the DSA and they affect the measurement results. If 
an event lasts a long time, you must set the system for a long 
time span. If the vibration levels change rapidly, use a smaller dT 
to capture the details of the time history. 

There are two main parameters in the frequency domain: the 
frequency resolution, dF; and the frequency span. All frequency 
measurements are plotted with frequency on the horizontal axis. 
The dF defines the spacing between two points on the frequency 
axis. The frequency span defines the range between zero and 
the highest value on the frequency axis. These parameters are 
also set in the DSA. If the PSD shape changes dramatically over 
a short frequency range, use a small dF. 

These four parameters cannot be selected independently be-
cause of the interrelations between them. The below equations 
summarize the relationships. 

Frequency Resolution 
dF (Hz) = 1/Time Period (sec) 
0.5 second Time Period: dF = 1/0.5 = 2 Hz 

Number of Frequency Points 
Number Frequency Points = ½ Number Time Points
2048 time points yields 1024 frequency lines 

Example: 
Time Record: 2048 points, dT=0.001 sec, T= 2.048 sec 
FFT: 1024 frequency lines, 0.488 Hz - 500 Hz 

Displays: Scaling, Waterfall, Spectrograph 
In addition to two-dimensional plots, common display formats 
include orbit plots, waterfall plots and spectrographs. An orbit plot 
shows one time trace on the x axis and a second time trace on 
the y axis. A waterfall is a three dimensional plot made by stack-
ing up consecutive two-dimensional plots. Waterfall plots show 
how a signal changes over time, or how a signal measured from 
a rotating machine changes with variations in the RPM. They are 
also useful for Order Analysis. Figure 25 shows a typical water-
fall plot of the spectrum of the vibration measured on a rotating 
machine during a run-up and coast down. Often the waterfall 
plot includes an option to display one slice, and record of the 
waterfall in separate panes. 

Figure 25. Time waterfall plot of PSD measured from a rotating 
machine during run-up with spectrum slice on top. 

Waterfalls can also be presented as a spectrogram as shown 
in Figure 26, a two dimensional format using color to represent 
amplitude.

Figure 26. Spectrograph of rotating machine run-up shown in Figure 25.

Vibration Suppression 
After taking vibration measurements and identifying problems, 
the next task is to fix them. This usually means suppressing by 
modifying the structure to eliminate the unwanted vibration ef-
fects. The many methods available for vibration suppression 
include source isolation, absorbers, damping treatment and ac-
tive suppression. The examples that follow show techniques of 
vibration suppression in rotating equipment. 
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Isolation 
Treating the source of the vibration is the most effective and 
often the most economical solution to vibration problems. The 
rotating unbalance in Figure 27 may cause the entire structure to 
vibrate. This can be solved by balancing the rotor and eliminat-
ing the vibration source. Another method of isolation is to add a 
highly damped material between the source and the structure. 
For example, on automobile engines large rubber mounts iso-
late the chassis from the engine. 

Absorbers 
When you cannot isolate the vibration source from the structure, 
another choice is to add a vibration absorber. The challenge is 
to absorb the vibration without affecting the structure. A vibra-
tion absorber is simply a mass-spring-damper system added to 
the structure and tuned to the same frequency as the offending 
vibration. An example is shown in Figure 27 where a vibration 
absorber is added to a rotating machine bracket to reduce the 
vibration of the bracket and surrounding structure. The mass-
spring-damper system resonates and vibrates with large ampli-
tudes, thus eliminating or reducing the vibration from the rest 
of the structure and reducing the vibration transmitted to other 
parts of the structure. 

Figure 27. Vibration isolators (left) and absorbers (right) are methods 
of passive vibration suppression.

Damping Treatment 
The most common form of vibration suppression is to add vis-
coelastic damping treatment to structural elements that are oth-
erwise lightly damped. A thin steel beam may be highly reso-
nant and exhibit large vibration that cause fatigue and failure, 
or transmit vibration to other parts of the structure. Applying an 
elastic coating to the steel surface increases the damping of 
the beam and thereby significantly reduces the vibration and its 
transmission. This method solves the problem with a negligible 
increase to the mass of the structure. Some structures use com-
plex composite materials to increase the damping. The layered 
sheet metal used in automobile bodies is one example. 

Critical Speeds of Rotating Equipment 
Rotating machines such as turbines, compressors and shafts 
are particularly subject to imbalances that cause vibration. 
When the rotating speed corresponds to the resonance fre-
quency of the first bend¬ing mode of the shaft, large forces are 
generated and transmitted to the bearings, eventually causing 
failure. This speed is called "critical speed," and the vibration is 
called "synchronous whirl." Rotating machines nor¬mally oper-
ate above the critical speed, so that the rotor must go through 
the critical speed to come up to full speed. If the run-up is too 
slow, the resonance at critical speed may build to unsafe levels. 
The rotor should have sufficient damping in the first mode to 
avoid this problem. 

Active Vibration Suppression 
When no other means of vibration suppression is feasible, ac-
tive vibration suppression may be the only answer. Active sup-
pression refers to using electronic controls to measure the vibra-
tion levels, process the data and drive a mechanical actuator to 
counteract the vibration levels as illustrated in Figure 28. It is 
analogous to the anti-noise sound suppression systems in air-
planes and jets. Active suppression is expensive to implement 
and requires careful design that may be strongly dependent on 
the nature of the structure. Off-the-shelf active vibration sup-
pression systems are not available. 

Figure 28. Damping treatment is the most common and active suppression 
is the most expensive technique for vibration suppression.

Vibration suppression is a broad topic. It is best to start at the 
source and work down the transmission path when necessary. 
Most techniques add damping, or change the mass and stiff-
ness to move the resonant frequencies away from fixed driving 
frequencies. However, changing the vibration response of one 
part of a structure is likely to change the vibration response of 
other parts as well. 

Modal Analysis 
Structures vibrate in special shapes called mode shapes when 
excited at their resonant frequencies. Under normal operating 
conditions, the structure will vibrate in a complex combination 
of all the mode shapes. By understanding the mode shapes, all 
the possible types of vibration can be predicted. Modal Analysis 
refers to measuring and predicting the mode shapes and fre-
quencies of a structure. 

The mode shapes and resonant frequencies (the modal re-
sponse) of a structure can be predicted using mathematical 
models known as Finite Element Models (FEM). These models 
use points that are connected by elements with the mathematical 
properties of the structure's materials. Boundary conditions de-
fine the method of fixing the structure to the ground and the force 
loads applied. After defining the model and boundary conditions, 
the FEM software computes the structure's mode shapes and 
resonant frequencies. This analytical model greatly aids in the 
design of a structure by predicting its vibration response before it 
is built. Figure 29 shows a Finite Element Model of a pressurized 
storage tank with force loads and boundary conditions. 

Figure 29. Finite Element Model of EADS Ariane 5 space vehicle.
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After building the structure, good practice requires verifying the 
FEM using experimental modal analysis. This identifies errors, 
particularity in the assumptions on the boundary conditions, to 
help improve the model for future designs. Experimental modal 
analysis is also useful without FEM models because it can iden-
tify the modal response of an existing structure to help solve a 
vibration problem. 

Experimental Modal Analysis consists of exciting the structure 
with an impact hammer or vibrator, measuring the frequency re-
sponse functions between the excitation and many points on the 
structure, and then using software to visualize the mode shapes. 
Accelerometers measure the vibration levels at several points 
on the structure and a signal analyzer computes the FRFs (Fre-
quency Response Functions). 

Typically, the structure is divided into a grid pattern with enough 
points to cover the entire structure, or at least the areas of inter-
est. The size of the grids depends of the accuracy needed. More 
grid points require more measurements and take more time. 

One FRF measurement is made for every measurement loca-
tion on the structure. The number of measurement points is de-
termined by size and complexity of the structure and the highest 
resonant frequency of interest. High frequency resonances re-
quire a fine grid to fully determine the mode shape. 

Each FRF identifies the resonant frequencies of the structure 
and the modal amplitudes of the measurement grid point associ-
ated with the FRF. The modal amplitude indicates the ratio of 
the vibration acceleration divided by the force input. The mode 
shape is extracted by examining the vibration amplitudes of all 
the grid points. 

For example, the tuning fork shown in Figure 30 is a very simple 
structure that could reasonably be represented by a very few 
points. Say that three accelerometers are placed on points one 
through three and then impact hammer is used to excite the 
structure at point 4. A signal analyzer records the FRFs and pro-
duces the results shown in Figure 30. The resonant frequencies 
are the peaks that appear at every point at the same frequency. 
The amplitude of the peak at each location describes the mode 
shape for the associated resonant frequency. 

Figure 30. Modal analysis of a tuning fork results in FRFs for each 
point on the structure with the amplitudes at each resonant frequency 
describing the mode shape.

The results indicate that for the first mode, the base is fixed and 
the end has maximum displacement as shown in Figure 31. The 
second mode has maximum deflection at the middle of the fork 
as shown in Figure 31. 

Figure 31. The first mode shape of the tuning fork has the base fixed and 
the maximum deflection at the end and the second mode shape has the 
ends fixed and maximum deflection at the middle.

Specialized software applications such as EDM Modal use FRF 
data to visualize the mode shapes. The software can identify the 
resonant frequencies and other modal parameters. Then it ani-
mates the mode shapes by drawing the deformed structure ei-
ther with a static image or a moving animation showing deforma-
tion from one extreme to the other. The software can generate 
color plots such as the structure shown in Figure 32 to represent 
the amount of deformation. 

Figure 32. Modal analysis of an I-beam structure with deformed 
geometry and color shading.

The goal of modal analysis is to understand the mode shapes 
by visualizing the deformed geometry. This information helps to 
understand the structure deformation dynamically. For example, 
a consumer product may be failing in the field. It is suspected 
that vibration is the cause of this failure. It is also known that 
an internal cooling fan rotates at 3600 RPM, or 60 Hz. Modal 
analysis of the structure illustrates that the cooling fan mounting 
bracket has a resonant frequency with a bending mode at 62 Hz. 
This suggests that the fan is exciting the bending mode of the 
bracket and causing the failure. The bracket can be redesigned 
by stiffening its structure and increasing the resonant frequency 
to 75 Hz, thus avoiding the structural failure. 

Operating Deflection Shape Analysis 
Operating Deflection Shape Analysis (ODS) is similar to modal 
analysis. There are two types of ODS analysis: time-based and 
frequency-based. Time-based ODS collects the time records of 
the motion of points on the structure during normal operation. 
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Then visualization software animates a geometric model of the 
structure so that moves in a manner proportional to the recorded 
data. Time-based ODS is different from modal analysis because 
there are no FRFs to record and no mathematical algorithms to 
apply. 

It is analogous to videotaping the motion of the structure during 
normal operation and then playing it back to understand the mo-
tion. The advantage is that some measured motions may be too 
small to see with the naked eye. The software allows to increase 
the scale of these motions so that they can be visualized.

Frequency-based ODS animates the vibration of a structure at 
a specific frequency. Animated deformation shapes derive from 
frequency domain measurements such as auto-spectra or fre-

quency response functions. Frequency-based ODS provides 
information on the rela¬tive levels of structural deformation. It is 
useful for cases where a force is applied and dwells at a specific 
frequency. It is a great tool for quickly spotting problems due 
to loose parts or connections. It is also useful for determining 
whether vibration will excite a resonance. 

Conclusion 
Structural vibration analysis is a multifaceted discipline that 
helps increase quality, reliability and cost efficiency in many in-
dustries. Analyzing and addressing structural vibration problems 
requires basic understanding of the concepts of vibration, the 
basic theoretical models, time and frequency domain analysis, 
measurement techniques and instrumentation, vibration sup-
pression techniques, modal analysis, and more. 
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